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Abstract. We compare different methods for obtaining accurate speech
segmentations starting from the corresponding orthography. The com-
plete segmentation process can be decomposed into two basic steps. First,
a phonetic transcription is automatically produced with the help of large
vocabulary continuous speech recognition (LVCSR). Then, the phonetic
information and the speech signal serve as input to a speech segmentation
tool. We compare two automatic approaches to segmentation, based on
the Viterbi and the Forward-Backward algorithm respectively. Further,
we develop different techniques to cope with biases between automatic
and manual segmentations. Experiments were performed to evaluate the
generation of phonetic transcriptions as well as the different speech seg-
mentation methods.

1 Introduction

In this paper we investigate the development of an accurate speech segmenta-
tion system for the Spoken Dutch Corpus project. Speech segmentations, on
phoneme (e.g. TIMIT) or word level (e.g. Switchboard, CGN), have become a
standard annotation in speech corpora. Corpus users can benefit from the fact
that the segmentation couples the speech signal to the other annotation layers
(orthography, phonetics) by means of time stamps, thus providing easy access
to audio fragments in the corpus. For the speech technologist segmentations are
indispensable for the initial training of acoustic ASR models, the development
of TTS systems and speech research in general.

Some speech corpora only provide automatic segmentations, obviously requir-
ing an accurate segmentation algorithm. In other corpora speech segmentations
are checked manually. The latter case requires a high-quality automatic segmen-
tation system as well, since a better base segmentation speeds up the manual
verification procedure which is time-consuming and expensive.
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Some segmentation systems are based on specific acoustic cues or features
for the segmentation task [1,2,3] focusing for instance on transient behaviour
or specific differences between phoneme classes. Others use general features and
acoustic modeling which are common in ASR [4,5]. The method proposed in this
paper is of the latter type.

Most speech segmentation systems take as input both the speech signal and
its phonetic transcription. As manual phonetic transcriptions again require a
lot of time and money, they are not always available for speech corpora. Or-
thographic transcriptions, on the other hand, make up the speech corpus’ base
annotation. This is the reason why we propose a segmentation system starting
from a phonetic transcription that is automatically generated on the basis of its
orthography.

The complete segmentation process is composed of two subtasks. First, a
number of alternative phonetic transcriptions is produced on the basis of a given
orthographic transcription and an automatic speech recognizer is used to select
the acoustically best matching phonetic representation. Then, this single pho-
netic transcription serves as input to a segmentation system based on either the
Viterbi or the Forward-Backward algorithm.

2 From Orthography to Phonetics

The automatic conversion from an orthographic to a phonetic transcription takes
two steps. First, several techniques are applied to produce a network of plausible
pronunciation variants. In a second step, the single best matching phonetic string
is selected by means of an ASR system. We performed the conversion on material
from the Spoken Dutch Corpus, in which the orthographic annotation is enriched
with codes to indicate certain spontaneous speech effects [6].

A full network of alternative phonetic transcriptions is generated on the ba-
sis of orthographic information. Lexicon lookup is a simple but efficient way to
acquire phonetic word transcriptions. Yet, not every orthographic unit is a plain
word. Some speech fragments contain sloppy speaking styles including broken-off
words, mispronunciations and other spontaneous speech effects. Different tech-
niques are introduced to handle these phenomena and a grapheme-to-phoneme
system (g2p) was developed as a fall-back. We will first describe the g2p system.
Then we focus on the other techniques and resources employed.

g2p: The g2p system is based on the Induction Decision Tree (ID3) mecha-
nism [7] and was trained on the Flemish Fonilex pronunciation database (200K
entries) [8]. Each phoneme is predicted based on a vector of 10 variables: the
grapheme under consideration, a context of 4 left and 4 right graphemes and the
last decoded phoneme (feedback). Phonetic transcriptions are generated from
back to front so that the last decoded phoneme corresponds to the right neigh-
bour, which turned out to be most informative. We performed a ten-fold cross
validation on Fonilex and achieved a 6.0% error rate on the word level.

lexicon lookup: Fonilex provides (multiple) phonetic transcriptions for most
of the standard Flemish words. Rules were developed to cover non-listed com-
pounds, derivations and inflections formed on the basis of Fonilex entries. At



this early stage, 5376 proper nouns (often foreign) were manually transcribed.
A new g2p convertor may be trained on these transcriptions to deal with fu-
ture proper noun input. Lexicon lookup is also the first option for foreign words.
We build upon the COMLEX English database, the CELEX German database
and the BRULEX French database. If a foreign word is part of more than one
of these lexica, the different phonetic realizations are put in parallel since the
orthography does not specify which foreign language was used.

spontaneous speech effects: For broken-off words, also with broken-off or-
thography, we first retrieve all lexicon words starting with the given orthographic
string. Then, a grapheme-phoneme alignment is produced for the retrieved words
which allows us to select the phoneme sequence(s) corresponding to the given
orthography. Mispronounced words are fed to the g2p convertor. Dialectical pro-
nunciations, orthographically represented by the standard Flemish word marked
with a code, are dealt with by first selecting a phonetic transcription for the stan-
dard word. Dialectical pronunciation variants for the word are then generated
by means of context-dependent rewrite rules. Finally, cross-word phonological
phenomena such as assimilation, degemination and inserted linking phonemes
are handled by context-dependent rewrite rules as well.

The outcome of the above techniques is a compact pronunciation network [9].
To select the transcription matching best with the speech signal, all phonetic al-
ternatives are acoustically scored (maximum likelihood) in a single pass (Viterbi)
through our speech recognition system and the most probable one is retained.
The phoneme models are statistically represented as three-state left-to-right Hid-
den Markov Models (HMMs).

3 Speech Segmentation: Viterbi vs. Forward-Backward

Once a phonetic transcription has been selected, automatic segmentation can
proceed in the following way. Sentence models are first generated by simply con-
catenating all relevant phoneme models. Next, the speech data are assigned (hard
or soft, by respectively Viterbi or Forward-Backward) to the acoustic model of
the complete phoneme sequence.

3.1 Viterbi Segmentation

The Viterbi algorithm returns the single best path through the model given the
observed speech signal xT1 (the corresponding sequence of feature vectors):

sTi = arg max
sTi ⊂S

T∏
i=1

f(xi | si)p(si | si−1) , (1)

with sTi a sequence of HMM states (one state for each time frame) which is con-
sistent with the sentence model S, T being the number of time frames. Thus, the
Viterbi algorithm results in the segmentation which reaches maximum likelihood
for the given feature vectors.
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Fig. 1. Viterbi and Forward-Backward boundaries

3.2 Forward-Backward Segmentation

The Viterbi algorithm only provides us with an approximation of the quantity
that is really looked for. This is illustrated in figure 1. The Viterbi algorithm
generates the boundary corresponding to (1), whereas the optimal boundary in
a least squares sense matches with (2).

To find the best possible estimate of the boundary in a least squares sense
the probability function of each boundary must be calculated:

P (b|S, xT1 ) =
f(xb1|Sl)f(xTb+1|Sr)

f(xT1 |S)
, (2)

with

f(xba|Sx) =
∑
sba⊂Sx

b∏
i=a

f(xi|si)1/βp(si|si−1)1/β . (3)

In the above equations, sentence S is divided in part Sl left and part Sr
right of the boundary of interest. The extra parameter β compensates for the ill-
matched assumption made by HMMs that the observations xi are independent.
The optimal value for β in our experiments was 10, but its exact value was not
at all critical. The same compensation factor can be found in recognition sys-
tems [9] as well as in confidence scoring of recognized words [10] for balancing the
contribution of acoustic and language model. The Forward-Backward algorithm
allows for an efficient calculation of the density functions for all boundaries in
a sentence. Given the probability density function of each boundary, the least
squares estimate now equals:

E{b} =
T∑
b=1

P (b|S, xT1 ) b . (4)

3.3 Post-processing Techniques for Segmentation

A detailed comparison of automatic and corresponding manual segmentations
revealed the occurrence of biases between the respective segmentations. These
biases depend on the classes of the phonemes left and right of the boundary,
and can be attributed to the fact that humans use different cues than HMMs



for finding the boundary between consecutive phonemes [2]. For the transition
to a vowel, for example, the average deviation can be more than halved when
compensating for these biases. An equally big improvement can be obtained for
transitions to noise. We discerned 9 phoneme classes in total and analyzed the
biases on the boundary position between each pair of classes. Those biases in
the automatic segmentations are removed in a post-processing step.

In a first approach to post-processing, we shift the boundaries purely on the
basis of the average biases. This simple technique is applicable to both Viterbi
and Forward-Backward segmentations. A second method tries to compensate for
the biases in a more advanced way by taking into account a confidence interval
for the boundary. These confidence intervals are derived from the Forward-Back-
ward method. Since the Forward-Backward algorithm calculates the probability
density function for each boundary, we can regard the variance of this function
as a confidence interval for the respective boundary:

Var(b) =
T∑
b=1

p(b | S, xT1 )(b− E{b})2 . (5)

So we estimate the bias as a function on the boundary’s confidence interval.
This function is determined empirically with a polynomial fit on a train set. In
section 4.3 we will discuss results for both post-processing techniques.

4 Experiments

4.1 Description

Experiments were performed on data taken from the Spoken Dutch Corpus.
Three test sets were selected, representing different degrees of difficulty for the
segmentation process. Test set 1 (50 speakers) accounts for the cleanest speech
in the corpus, namely the read-aloud texts. It consists of 14176 words, result-
ing in 17976 boundaries since pauses exceeding 50 ms were also part of the
segmentation. Broadcast material (documentaries, news shows, etc.) and public
speeches belong to test set 2 (23 speakers, 7135 words, 9189 boundaries). They
are harder to process than the read-aloud texts as background noise might be
present and the speaker’s style becomes more disfluent. Finally, test set 3 (11
speakers) consists of informal interviews, discussions and school lessons for a
total of 27878 words and 36698 boundaries. They pose the hardest problem for
the segmentation system as they are riddled with overlapping speech, dialectical
pronunciations, etc.

For the experiments we used the LVCSR system developed by the ESAT-
PSI speech group at the K.U.Leuven [9,11]. The acoustic models employed in
the experiments were estimated on a separate database with 7 hours of dictated
speech in Flemish.

4.2 Automatic Phonetic Transcription

The automatic generation of phonetic transcriptions was evaluated by counting
the number of insertions, deletions and substitutions of the automatic tran-



Table 1. Deviations between automatic and manual phonetic transcription

test set ins del sub total
test set 1 0.77% 1.27% 2.95% 4.99%
test set 2 1.15% 1.59% 3.41% 6.15%
test set 3 1.82% 2.18% 4.26% 8.26%

scription with respect to a hand-checked reference transcription. This reference
transcription was produced by a trained phonetician who corrected a baseline
transcription generated by a g2p system different from the one described in this
paper. The results of the comparison are summarized in table 1. These results
were obtained by using context-dependent models, which outperformed corre-
sponding context-independent models for this task.

A detailed analysis revealed three main causes for the deviations. First, cer-
tain infrequent assimilation rules were not included in our conversion system
so that the corresponding pronunciation variants did not occur in the network.
Second, the acoustic models were sometimes problematic because they impose a
minimal duration constraint of 30 ms (causing schwa-deletion in particular) and
because train and test conditions differ (especially for test sets 2 and 3). Third,
not every deviation unambiguously corresponded to an error in the automatic
transcription. For example, the automatic transcription typically incorporates
more connected speech effects than its manual counterpart. This might be due
to the fact that human transcribers, having to work at a considerable speed,
sometimes overlook these phenomena not present in the base transcription they
were offered. For example, especially schwa and linking phonemes were inserted
in the automatic transcription. In Dutch schwa can be inserted in coda position
in nonhomorganic consonant clusters (e.g. /kAlm/ → /kAl@m/) [12]. Yet, this
schwa-insertion is not part of the baseline phonetic word transcription provided
by the g2p system. Similarly, schwa and syllable-final /n/ were often deleted
in the automatic phonetic transcription. Again both phenomena are typical of
Dutch connected speech.

4.3 Automatic Word Segmentation

The automatic segmentations were evaluated by counting the number of bound-
aries for which the deviation between automatic and manual segmentation ex-
ceeded thresholds of 35, 70 and 100 ms. Manual segmentation was performed
by two persons and started from an automatic segmentation produced by the
Viterbi algorithm (sect. 3.1). The persons were instructed to position bound-
aries so that each word would sound acoustically acceptable in isolation. Shared
phonemes at the boundary (e.g. he is sad) were split in the middle, except for
shared plosives (e.g. stop please), which were isolated altogether. Noticeable
pauses (> 50 ms) were segmented in the same way as words, thus producing
empty chunks.

We performed experiments for both Viterbi and Forward-Backward segmen-
tation, starting from a manual and automatic phonetic transcription. As can be



Table 2. Results: Viterbi vs. Forward-Backward

test manual phon. trans. automatic phon. trans.
set deviations exceeding deviations exceeding

35ms 70ms 100ms 35ms 70ms 100ms
Viterbi

test set 1 7.8% 1.7% 0.7% 8.5% 1.9% 0.7%
test set 2 14.4% 6.0% 3.4% 15.8% 6.3% 3.5%
test set 3 14.3% 9.3% 7.7% 16.1% 9.4% 7.5%

Viterbi post-processed
test set 1 7.8% 1.5% 0.6% 8.5% 1.8% 0.7%
test set 2 14.2% 5.5% 3.3% 15.0% 5.8% 3.4%
test set 3 12.7% 8.6% 7.3% 14.3% 8.8% 7.1%

Forward-Backward
test set 1 8.1% 1.5% 0.6% 8.8% 1.7% 0.6%
test set 2 14.4% 5.6% 3.0% 15.6% 5.8% 3.1%
test set 3 16.7% 9.6% 7.6% 17.9% 9.5% 7.2%

Forward-Backward post-processed
test set 1 7.1% 1.3% 0.6% 7.7% 1.5% 0.6%
test set 2 13.8% 5.0% 2.9% 14.7% 5.3% 3.0%
test set 3 14.8% 9.0% 7.3% 15.8% 8.9% 7.0%

seen from the post-processed results in table 2, the forward-backward method
clearly outperforms the Viterbi approach on test sets 1 and 2. The different be-
haviour on test set 3 is mainly due to the combined effect of using the Viterbi
segmentation as a starting point for the manual verification process and the low
quality of the material in test set 3, from which the human correctors quickly
learned that only in few cases clear improvements could be obtained by moving
boundaries. This behaviour is reflected in the number of boundaries for which
alternative positions were tried by the correctors: 37.1% and 51.7% for test set 1
and 2 versus only 32.7% for test set 3.

A detailed analysis showed that the majority of the remaining deviations in
the automatic post-processed segmentations are transitions to and from noise
and transitions to unvoiced plosives (45%, 11% and 15% of the remaining 35 ms
errors respectively). Since these boundaries also show large variation between the
corresponding manual segmentations of different correctors, we cannot expect an
automatic system to give more consistent results.

Post-processing using confidence intervals showed no improvement and hence
only the results for the simplest post-processing proposed in section 3.3 are given
in table 2. The confidence intervals can be used to predict misplaced boundaries
(e.g. more than 50% of the 75 ms deviations can be found by checking only the
10% boundaries with the largest predicted variance) but since the sign of the
deviation (shift boundary to the left or right) cannot be predicted, no better
boundary positions could be produced. However, the confidence intervals may
still be useful for other applications such as TTS systems for which the segments
with reliable boundary positions can be selected automatically.



Finally note that using the automatically derived phonetic transcriptions
results in a limited degradation in the accuracy of the boundary positions. This
reflects the fact that the automatic phonetic transcription is of a high quality.

5 Conclusions and Future Research

We presented a system which first generates a phonetic transcription on the basis
of orthographic information and then uses the obtained transcription to produce
automatic speech segmentations. Different approaches to segmentation and bias
compensation were explained and tested. The forward-backward segmentation,
proposed as an alternative to the commonly used Viterbi algorithm, shows very
good results, especially when considering that the Viterbi segmentation was used
as starting point for the manually verified segmentation. The obtained phonetic
transcriptions are also of high quality, showing the potential of ASR techniques
for phonetic research. To further improve the automatic system, the following
actions can (and will) be taken: (1) eliminating the mismatch between training
and testing conditions by retraining of the acoustic models on the corpus that
must be annotated, (2) the introduction of single state models for phonemes
that tend to be pronounced very rapidly, and (3) the derivation of more assim-
ilation rules based on what is observed in the corpus. But even without these
modifications, the results obtained by the automatic system are up to state of
the art.
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