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Abstract – In this paper we investigate experimentally how different sources
of uncertainty affect the classification performance of an SVM based binary
classifier. Our aim is to find statistically sound methods for controlling the
detrimental effects of such sources when a classifier is to be implemented in
hardware platforms where severe limitations force designers to allocate power,
computation and memory resources carefully. At a first analysis, SVM revealed
robust in terms of noise on data, whereas training data scarcity is a problem
to be investigated further on.
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I. INTRODUCTION
Wireless Sensors Networks (WSNs) and other ubiquitous

computing technologies are a promising and fast growing ap-
plication area, mainly thanks to the recent advances in micro-
electro-mechanical systems (MEMS), wireless communica-
tions, and digital electronics.

A WSN [1] is composed of a large number of small sized
sensor nodes, each provided with sensing, data processing,
and wireless communicating components, which cooperatively
solve a given measurement task. The measurement and the
environment vary across applications, including among oth-
ers: remotely monitored physiological data of a patient; for-
eign chemical agents detection in water, air or soil; detection,
recognition and tracking of objects (e.g. for military applica-
tions); monitoring of wildlife species and biocomplexity map-
ping. Among the advantages with respect to traditional sensor
systems are the possibility to scatter sensors into inaccessible
areas and leave them unattended and capability of each node to
(pre)process data locally, avoiding the expensive transmission
of raw data. On the other hand, these desirable features pose
serious challenges to research and technology. Self-organizing
capabilities of communication algorithms and Power-Aware
(PA) design techniques are two of them. The latter is justi-
fied observing that the growth of chip elements density does
not come with a comparable growth of energy density of bat-
teries nor with remarkable improvements in power scavenging
techniques.

A typical WSN measurement task includes classification,
or more generally, pattern matching: a sensor network is
deployed in order to detect and classify a predefined phe-
nomenon, such as the occurrence of harmful environmental
conditions for crops and livestock or a queue of cars starting
to build-up on a highway. Usually classification algorithms are
expensive in terms of computation and memory requirements.

In order to implement a WSN for classification two indepen-
dent constraints have to be taken into account:

• nodes are usually small in terms of processing capabilities
and memory;

• the most power consuming activity for a node is data
transmission and reception.

Given the above constraints, two contrastive approaches can be
adopted:

1. perform centralized classification, i.e. into base stations,
which collect poorly processed data from sensor nodes.
This alleviates the computational load in each node at the
expense of a great deal of power consumption for radio
transmission from nodes to stations;

2. perform classification at node level. This is a PA ap-
proach that yields the challenge of finding lightweighted
classification algorithms, together with sound methods
for performance evaluation of such algorithms, in order
to measure trade-offs between classification performance
and computational costs at design time.

In this paper we are focusing on the latter approach [2].
Classification is one of the objects of study of Machine

Learning (ML). Maximum Likelihood estimation, k-Nearest
Neighbor, Neural Networks and Support Vector Machines
(SVMs) are the most popular among the approaches based on
Learning from Examples [3]. We chose to focus our analysis
on SVMs, because they have some peculiarities which we find
useful for the problem of designing lightweighted, robust and
reliable classifiers [4] [5]. Such distinguishing characteristics
are:

convexity: the classification problem is solved by the mini-
mization of a convex quadratic function, hence avoiding
the problem of local minima, which instead hampers Neu-
ral Networks [6];

data sparseness: the solution to the classification problem
is expressed in form of a decision function that is a non-
linear combination of a (usually) small subset of training
examples, i.e. of the data used for building the classifier.
Such special training vectors are called support vectors.

The former point concerns reliability, whereas the latter can
have strong consequences on implementation, because once
the training phase has completed, the classifier itself consists
of a relatively simple function of a selected number of training



vectors, with a save in terms of complexity and memory us-
age with respect to other techniques such as Nearest Neighbor,
which requires the storage of the whole training set [6].

Many works in the ML literature deal with performance as-
sessment of different classification algorithms, but usually they
focus mainly on classification performance rather than on im-
plementation issues [7] – [10]. In particular, SVMs have been
widely studied recently, and, among other topics, a great deal
of attention is put into the objective of reducing the number of
support vectors [11], an issue having also an undisputed prac-
tical relevance. Nevertheless, such investigations do not delve
more into equally important implementation matters, such as
noise robustness or quantization effects.

In this paper we have started to address such investigations.
We performed a study on the solution space of SVMs, and on
the effects of different classes of noise on that space. Our ul-
timate goal is to find quantitative criteria for determining to
what extent the classification is to be considered reliable when
we are going to face noisy conditions, because of the physical
environment or because of fixed point representation of data.
The application of such criteria may become a design tool for
reduced complexity SVM based classifiers.

As a last remark, in order to be as objective as possible in
our somewhat qualitative analysis, we performed statistical hy-
pothesis tests whenever possible, following the guidelines sug-
gested by Cohen [12] and Dietterich [13].

The paper is organized as follow: in section II we introduce
SVMs, in section III we present our proposed approach and in
section IV we display the results achieved up to now, together
with a discussion about projected future results.

II. AN INTRODUCTION TO SVM

As for any Learning by Example algorithm, a SVM is a
method for the estimation of a set of parameters based on a
(ofter small) set of training examples. An optimality criterion
is applied in order to find the best set of parameters which de-
termine a function that is supposed to generalize some property
about the overall distribution of data, i.e. able to predict such a
property about any previously unseen example.

The formulation of the problem for the case of binary clas-
sification can be summarized as follows [3] [14] [15].

1. In order to solve non-linear classification problems, a
non-linear function ϕ(·) maps the original input space
into another dot product space – the feature space – with
much higher dimensionality (even infinite).

2. In this space, a hyperplane that correctly separates the
two classes in the training set is found according to the
optimality principle of maximizing the minimum distance
between the hyperplane and any training point (the mar-
gin).

3. In order to cope with non-separable cases and to penal-
ize complex solutions that may lead to overfitting, a reg-
ularization term is included in the optimization problem,
which allows to find solution with non-zero training error.

4. Exploiting a property of Hilbert spaces and the particu-
lar form of the function to be minimized, it is possible
to formulate the problem without the explicit use of the
map ϕ(·). Instead, a non-linear function K (u, v) called
the kernel allows to express dot products between mapped
vectors as follows:

〈ϕ (xi) , ϕ (xj)〉 = K(xi, xj) (1)

where xi is a data sample in the input space and 〈·〉 is the
dot product in the feature space.

5. A possible formulation of the problem, called C–SVM,
is the following:

min
α

(

1

2
α

T Qα − 1
T
α

)

0 ≤ αi ≤ C, i = 1, . . . , N

y
T
α = 0

(2)

for some C > 0. Here Q = yiyj 〈ϕ (xi) , ϕ (xj)〉 =
yiyjK(xi, xj) as in (1), yi are class labels, N is the num-
ber of training examples and αi are the parameters to be
optimized. As pointed out in section I, a SVM solution is
usually sparse, meaning that only a fraction of αi will be
greater than 0. Each αi is associated with a training ex-
amples xi, thus only a subset of them, called the Support
Vectors (SVs), will contribute to the final solution.

6. An alternative form of problem formulation is referred to
as ν-SVM:

min
α
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)

0 ≤ αi ≤ 1, i = 1, . . . , N

1
T
α = νN

y
T
α = 0

(3)

A nice property of the parameter ν ∈ (0, 1) is that it can
be regarded as an upper bound on the fraction of allowed
wrong classified training examples, and a lower bound on
the fraction of SVs.

The solution to a SVM classification problem stated as
above is not a single point, instead it usually spans a two-
dimensional space. The reason is that:

1. solutions (2) or (3) depend on an arbitrary parameter (C
and ν respectively);

2. different kernel function families exist, typically de-
pending on one parameter. Popular kernels are the lin-
ear (K (u, v) = u · v), the Gaussian (K (u, v) =

exp
(

−γ ‖u − v‖2

)

) and the polynomial (K (u, v) =

(1 + u · v)p) [15].
Since we are going to adopt a Gaussian kernel, our solution
space Γ will be either (C, γ) or (ν, γ).

With model selection we generally intend the process aimed
at determining values in the solution space Γ that optimize
the behavior of the corresponding SVM. Optimality is usu-
ally expressed in terms of an estimate of the minimum clas-
sification error [16], and a regular grid search approach on Γ
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Fig. 1. UCI Ionosphere dataset. A full search in the (C, γ) SVM solution
space on a 90 by 90 logarithmic grid. Accuracy is represented in gray levels
from black to white, and contour lines display the corresponding number of

SVs.

is performed. In the context of reduced complexity SVM de-
sign, an important issue to optimality is the number of SVs,
which is linearly related to computation and memory require-
ments. This leads to a multi-objective approach, in which clas-
sification error and number of SVs are minimized simultane-
ously. Articulated solutions have been proposed; throughout
our analysis we will adopt one of the simplest multi-objective
approaches, the ε-constrained method [17] , which involves the
minimization of a primary objective while expressing the other
objectives in the form of inequality constraints. Our objective
space is two-dimensional, hence there are only two ways for
applying such principle: either minimize classification error
imposing an upper limit on the number of SVs, or minimize
the number of SVs without exceeding an upper limit on the
classification error. We will apply both.

III. DATA UNCERTAINTY SENSITIVITY ANALYSIS
Our rationale, also inspired by simple qualitative inspec-

tions of the SVM solution space, can be summarized as fol-
lows:

• Figure 1 shows an example of solution space: here Γ is
(C, γ), classification accuracy increases from darker to
lighter regions, while contour lines display the number
of SVs. The central white area is characterized by small
variations of accuracy level and by variations in the num-
ber of SVs. Since this trend was found to be rather gen-
eral, an approach based on a multi-objective search in Γ,
where both a high accuracy and small number of SVs are
searched for simultaneously, is likely to lead to advanta-
geous trade-offs, i.e. it is possible to pay a little of accu-
racy for a large reduction in the number of SVs;

• we intend to investigate how different sources of un-
certainty such as noise, quantization and training data
scarcity affect optimal solutions, in order to adapt our
search criterion to more realistic conditions imposed by
hardware platforms.

Given the above informal statement of the problem, our analy-
sis is organized as follows.

Our investigation is experimental: we analyzed both real
and artificial problems. Real data are taken from the UCI
repository [18], and we selected problems close to a typi-
cal sensor measurement situation (i.e. continuous rather than
nominal features); artificial data have been also included be-
cause they do not bring all the drawbacks connected to data
scarcity, as explained below. We investigated both Γ = (C, γ)
and Γ = (ν, γ) space, because even if the latter formulation of-
fers a closer control on the number of SVs, we also need to
carry out an exploratory analysis on how a given set of so-
lutions degrade with noise, and the former formulation gives
greater freedom to both our objectives (accuracy and number
of SVs) to vary. Among many choices, we selected the follow-
ing classes of noise:

• additive Gaussian noise on data. This is generally ac-
cepted for modelling a generic source of noise in data ac-
quisition systems;

• quantization noise on data and on SVM αi coefficients.
This is intended to model in first approximation the effect
of fixed point representation of numbers;

We carried out both a qualitative inspection of results and a
quantitative assessment. The latter is organized as follows:
we selected some representative conditions, like “clean”, “low
noise”, “high noise”, and “few SVs”, “many SVs”. Then we
performed pairwise statistical hypothesis tests in order to deter-
mine the degree of similarity between couples of factors. For
example: compare “clean” vs. “low noise” given “few SVs”
provides us a measure of the robustness of a solution with a
reduced number of SVs with respect to a low level of noise.

IV. EXPERIMENTAL RESULTS

We performed a set of experiments using the LIBSVM tool
[19] and real-world datasets taken from the UCI Machine
Learning repository. These datasets are small (a few hun-
dreds of examples), each example being composed by a vector
of continuous valued features and a binary class label. Each
dataset was split into Train and Test set (Tr/Te) in a 2:1 propor-
tion, and care was taken in balancing class occurrence in the
Train set and in having a minimum number of examples from
both classes in the Test set. Five different of such Tr/Te splits
were performed, and each experiment was repeated five times
accordingly. After scaling all feature vector components to
the range (-1,1) [20], additive Gaussian noise and quantization
noise at different levels was applied, each level affecting all the
features alike. For the Gaussian case, a different noise realiza-
tion was generated for each Tr/Te split and for each SNR.

C–SVM was used and a grid search approach was adopted
on Γ = (C, γ). Our grid is 90 by 90 points, and each di-
mension is sampled in geometrical progression with a step of
1.2, because we wanted to span many orders of magnitude (the
number 1.2 is a compromise solution after trying different val-
ues). A set of sub-optimal solutions was selected from each ex-
periment by minimizing the classification error and imposing



different upper bounds on the number of SVs (ε-constrained
method, see Section II). Figure 2 shows the obtained results.
Three factors vary: upper bound on the number of SVs, noise
levels and Tr/Te random splits. All of them are measured w.r.t.
the classification error on the test set. A first qualitative inspec-
tion reveals that test error can vary widely w.r.t. different Tr/Te
random split realizations. Conversely it is much more stable
w.r.t. the other two factors, as shown by the average lines.

The above shown effect is a quite interesting and harmful
consequence of data scarcity hampering any Learning by Ex-
ample algorithm, and in order to investigate it more it is use-
ful to use artificial data, because they are virtually unlimited.
Our objective is to find experimentally quantitative relations
between the size of the Train set and the statistical behavior of
accuracy. Real-world data will be then employed for validat-
ing such relationships, in the limits imposed by their intrinsic
scarcity.
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(a) Ionosphere dataset, Gaussian noise
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(b) Ionosphere dataset, quantization noise
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(c) Glass dataset, Gaussian noise

Fig. 2. Noise vs. test error rate (in percentage) for various Upper Bounds
(UB) on the number of SVs (in train set percentages). Dots represent single
Tr/Te splits (in different shapes), lines are averages over the 5 Tr/Te splits


